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Multiplier phenomenology in random multiplicative cascade processes
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We demonstrate that the correlations observed in conditioned multiplier distributions of the energy dissipa-
tion in fully developed turbulence can be understood as an unavoidable artifact of the observation procedure.
Taking the latter into account, all reported properties of both unconditioned and conditioned multiplier distri-
butions can be reproduced by cascade models with uncorrelated random weights if their bivariate splitting
function is nonenergy conserving. For thea model we show that the simulated multiplier distributions con-
verge to a limiting form, which is very close to the experimentally observed one. If random translations of the
observation window are accounted for, also the subtle effects found in conditioned multiplier distributions are
precisely reproduced.@S1063-651X~99!05402-1#

PACS number~s!: 47.27.Eq, 02.50.Sk, 05.40.2a
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Random multiplicative cascade processes frequently s
as phenomenological models for the study of a variety
complex systems exhibiting multifractal behavior. In partic
lar the energy dissipation field of fully developed turbule
flows has been most successfully modeled in such ter
physically motivated by Richardson’s picture of ener
transfer from large to small scales by random breakups
eddies@1#.

Binary multiplicative cascade models relate the ene
flux EL at some integral scaleL to Er5ELW1•••WJ con-
tained in a subinterval of sizer 5L/2 j at scaleJ by a product
of mutually independent random weightsWj . More pre-
cisely, the energy fluxEk

( j ) , contained in the intervalk with
length r 5L/2j splits into a left~L! and right ~R! offspring
interval, each of lengthr /2, whereby the content propagat
according toE2k

( j 11)5WLEk
( j ) and E2k11

( j 11)5WREk
( j ) , respec-

tively. For each breakup the two random weightsWL,R>0
are chosen,independentlyfrom any preceding breakup, ac
cording to a joint probability densityp(WL ,WR) with expec-
tations^WL,R&51/2. The latter we denote as splitting fun
tion. Note that for a full description of a binary breakup t
specification of thejoint density is necessary. For the spec
case where the splitting function is concentrated along
diagonal WL1WR51, i.e. p(WL ,WR)5p(WL)d(WL1WR
21), each breakup strictly conserves energy; for all ot
forms, however, the relationE2k

( j 11)1E2k11
( j 11)5Ek

( j ) holds
only on average.

A simple example is the splitting function

p~WL ,WR!5@p1d„WL2~12a!/2…1p2d„WL2~11b!/2…#

3@p1d„WR2~12a!/2…

1p2d„WR2~11b!/2…#, ~1!

which is known as thea model @2#. The probabilitiesp1
512p25b/(a1b) are determined by energy conservati
in the mean:p1(12a)1p2(11b)51. In contrast to the
otherwise similarp model suggested in@3#, thea model does
not conserve energy in each local splitting.
PRE 591063-651X/99/59~2!/2451~4!/$15.00
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Multiplicative cascade models are based on two assu
tions: ~a! the existence of a scale-independent splitting fu
tion p(WL ,WR) and ~b! statistical independence of the ra
dom weightsWL,R at one breakup from those of any oth
breakup. Oncep(WL ,WR) is chosen or deduced from ex
periment, the assumptions~a! and~b! allow to determine all
moments and scaling exponents of the energy dissipa
« r5Er /r by inverse Laplace transforms@4,5#. Many experi-
mental measurements of moments and scaling expon
confirm that this simple construction reproduces the m
sured multifractal aspects of the energy dissipation fi
amazingly well~e.g.,@3,6#!.

A series of experimental investigations@7–9# aim at a
direct study of the random weightsW by analyzing the dis-
tributions of closely related observables, so-called multip
ersM ~or breakup coefficientsq52M in the case of binary
breakups!, whose operational definition is given below
These studies reveal that assumption~a! is true over a decade
of scales, with the restriction that the scale-invariant dis
bution p(M ) depends also on the relative position of t
offspring to the parent interval; however, assumption~b! is
clearly violated. Significant correlations between multiplie
at adjacent scales are observed. Such correlations appar
obscure the validity of uncorrelated multiplicative casca
models for fully developed turbulence, and more elabor
models, such as the ‘‘correlatedp model’’ @8#, were sug-
gested. These experimental findings gave already rise
critical discussion of the limitations of multiplier phenom
enology@10#. In this paper we present a further clarificatio
of the experimental results.

In order to explain the observed multiplier correlatio
within the framework of binary multiplicative cascade pr
cesses two considerations are made:~i! the bivariate splitting
function p(WL ,WR) should not be assumed to be ener
conserving; this is justified by the experimental restriction
measure the energy dissipation field of three-dimensio
turbulence only along a one-dimensional cut~i.e., from the
velocity time series obtained from anemometers and emp
ment of Taylor’s frozen flow hypotheses!. Consideration~ii !
concerns the obvious nonhomogeneity of cascade proce
2451 ©1999 The American Physical Society
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Due to their hierarchical structure then-point correlation
functions of the generated energy dissipation field are
translationally invariant~cf. @11# for a visualization!; multi-
pliers in dyadic intervals will be different if the observatio
window L is shifted by an arbitrary amount, sayDx. In real
world experiments, however, the observation window
placed in no relation with the unobservable hierarchi
structure of the cascade, so that implicitly an averaging o
uniform random translations is performed. The effect of su
random translations was hitherto assumed to be neglig
We test this assumption by introduction of random sh
before calculating the multipliers. It is especially this latt
operation that leads to a full explanation of all available e
perimental findings of conditional multiplier distributions. I
the following we discuss the implications of above consid
ations~i! and ~ii ! one after the other.

It has already been pointed out in@12# that the noncon-
servation of energy in the splitting function leads to dev
tions from perfect multifractal scaling. Here we focus on
influence on multiplier distributions obtained from simulat
realizationsEk

(J) afterJ cascade steps. Depending on the re
tive position of parent to offspring intervals, left, right, an
centred multipliers at scalej and positionk are operationally
defined as

Mk,L
~ j ! 5

Ē2k
~ j 11!

Ēk
~ j !

, Mk,R
~ j ! 5

Ē2k11
~ j 11!

Ēk
~ j ! ,

~2!

Mk,C
~ j ! 5

Ē4k11
~ j 12!1Ē4k12

~ j 12!

Ēk
~ j !

,

and the multiplier distributionsp(M ( j )) are obtained by his-
togramming all 0<k,2 j possible multipliers at a given
scale.

It is important to note that the experimentally measu
‘‘backward’’ energies

Ēk
~ j !5 (

l 5k2J2 j

~k11!2J2 j 21

El
~J! , ~3!

are obtained by successive summations from the finest r
lution scaleJ to larger ones and are generally not equal to
‘forward’ energy densitiesEk

( j ) , which arise as intermediat
states in the evolution of the cascade from larger to sma
scales. For a clearer distinction we denote the former wi
bar. Since, by definition, the multipliers satisfyMk,L1Mk,R
51, they effectively enforce local energy conservation a
therefore give only incomplete information on the tr
parent-offspring relation of non-energy-conserving breaku

For the special case of energy-conserving splitting fu
tions, such as thep model @3#, the multipliers~2! do give a
faithful representation of local breakups. Here, the left a
right multiplier distributions are equal to the splitting fun
tion p(W) along theWL1WR51 diagonal and do not de
pend on the scalej.

The situation is quite different for non-energy-conservi
models, such as thea model. In this case there is no simp
analytical relation between the splitting function~1! and the
resulting distributions of multipliers~2!; in fact, the mapping
ot
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from ~1! to p(M ( j )) via Eqs.~2! and~3! acts effectively as a
nonlinear smoothing operation. This we demonstrate in
following simulation results: The scale dependent left@13#
multiplier distributionp(ML

( j )) is depicted in Fig. 1, where
105 configurations were generated, each withJ59 cascade
steps. While the weightsWL,R in the forward evolution may
take only two values (12a)/2 and (11b)/2, the multipliers
~2! take more and more distinct values as the scale differe
J2 j increases and becomes soon quasicontinuous. Alre
after three backward steps the left~and right! multiplier dis-
tributions apparently converge to a limiting form that com
surprisingly close to a parametrization of the experimenta
observed multiplier distribution@8#, shown as continuous
line. The parameters used in this simulation werea50.3,b
50.65, but this finding also holds for other parameters as,
example,a5b50.4 or a50.5,b50.3; all these choices
have approximately the same second-order splitting mom
^WL

2&5*0
1p(WL ,WR) WL

2 dWLdWR .
A similar convergence follows for centred multiplier dis

tributionsp(MC) with the distinction that the correspondin
limiting density appears to be narrower@shown in Fig. 2~a!
for j 53] compared top(ML); this latter feature is quite in
agreement with the observations in@9#. Analogous results are
found for multipliers generalized to arbitrary length rati
between offspring and parent intervals. In Fig. 2~a! the left-
skewed histograms show corresponding limiting distrib
tions for left and central multipliers for two cascade stepj
→ j 12 and thus relate intervals with length ratio 1/4.

In the above comparisons the unavoidable random tra
lations of the observation window with respect to the casc
position@as discussed in suggestion~ii ! above# has not been
accounted for. Following the procedure introduced in R
@11#, we adopt a scheme of random translations in the

FIG. 1. Convergence of the left multiplier distributionsp(ML
( j ))

of the non-energy conservinga-model ~1! to a quasicontinuous
limiting form. Parameters areJ59,a50.3, andb50.65. For com-
parison the experimentally deduced,b-function parametrization of
the left ~right! unconditioned multiplier distribution withb53.2 @8#
is shown as a solid line.
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lowing way: for the target resolution scaleJ of a given inte-
gral length scaleL a longer cascade realization withJ13
steps is generated~corresponding to an integral length sca
8L) and an observation window of sizeL is shifted randomly
by t bins within 8L. In other words, only the 2J bins of the
generatedEk8

(J13) , which lie within the randomly placed ob
servation window are considered, giving a simulated a
translatedEk

(J)5Ek82t
(J13) , where t is a uniformly distributed

integer within@0, 732J21#. Then the multipliers are deter
mined again by Eq.~2! and sampled over a large number
configurations and random shiftst.

There is no dramatic change in unconditioned multipl
distributions after addition of random translations; the sm
effect is illustrated in Fig. 2~b! compared to Fig. 2~a!. The
left multiplier distributionp(ML) now is even closer to the
experimentally deduced scale-invariant parametrization
Ref. @8#; this property also holds for the other two parame
zations used, (a,b)5(0.5,0.3) and (0.4,0.4).

So far the multiplier distributions we have looked at a
unconditioned. In the experimental analyses@8,9# condi-
tioned multiplier distributions of the form

p~MD
~ j !uMmin<MD

~ j 21!<Mmax! ~4!

have been shown; they correlate a parent multiplierMD
( j 21)

with the multiplierMD
( j ) of its offspring, whereD stands for

L,C,R, respectively.
The addition of random translations introduces signific

correlations among multipliers at different scales, which
well reflected in the conditioned distributions~4!. Figures
3~a! and 3~b! illustrate the correlations between offspring a
parent multiplier for the centred and left case respective
Compared to the unconditioned densityp(MC

( j )) the condi-
tioned onep(MC

( j )u0<MC
( j 21)<1/2) is skewed to the left and

p(MC
( j )u1/2,MC

( j 21)<1) is skewed to the right; the centre
offspring and parent multipliers are positively correlate

FIG. 2. ~a! Left ~dashed! and centred~solid! multiplier distribu-
tions for thea model ~1!. For the one step multipliers (j→ j 11)
the length ratio between offspring and parent intervals isl5

1
2

while for the two-step multipliers (j→ j 12) we havel5
1
4 . Param-

eters areJ59,a50.3, andb50.65. ~b! Same as~a!, but with ran-
dom translations applied before calculating the multipliers. F
comparison the experimentally deducedb-function parametrization
of the left ~right! multiplier distribution (j→ j 11) with b53.2 @8#
is shown as a thick solid line.
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Moreover, the maximum value of the former is higher th
the latter. This result is identical to the experimental findi
of Ref. @9#.

For the conditioned left multiplier distribution
p(ML

( j )uMmin<ML
( j 21)<Mmax) we show results in Fig. 3~b!;

again the parameters (a,b)5(0.3,0.65) for thea model
have been used. The conditioning on the subra
@Mmin ,Mmax#5@0.2,0.4# leads to narrowing of the distribu
tion and conditioning on@Mmin ,Mmax#5@0.6,0.8# to a
broadening. Again, this is in perfect agreement with the
perimental finding in Ref.@8#.

We report without figures that for the parameter cho
(a,b)5(0.4,0.4) the effects seen in Fig. 3~b! become
weaker and vanish almost completely for the choice (a,b)
5(0.5,0.3). Also Fig. 3~a! is modified: for (a,b)
5(0.5,0.3) the maximum of the left skewed distribution~1!
is lower than the right skewed one~2!, while for (a,b)
5(0.4,0.4) they are approximately equal. A noticeable le
right shift, however, remains in all three cases.

From these observations we come to the following co
clusion: with non-energy-conserving splitting functions a
the inclusion of random translations the unconditioned m
tiplier distributions observed in the data@8,9# are reproduced
quite naturally; moreover, once the input splitting function
skewed in a certain direction also the correct condition
multiplier distributions are deduced. Very similar numeric
observations are also obtained for different choices of sp
ting functions@14#. Since the simulated cascades satisfy b
assumptions~a! and ~b! above, we regard the comparab
violation of ~b! in experiments and Fig. 3 as an unavoidab
artifact of the observation procedure.

Related to the multiplier phenomenology is the proble
of how to extract the correct~multifractal! scaling exponents
The findings of Ref.@12# favor the left/right over the centra
multipliers, but there the random translations were not
counted for. Certainly the inclusion of the latter modifies t
scaling exponents to some extent@11#, the more noticeable
the higher the order of the underlying moments. Due to th
operational ambiguities we feel that it should not be a ma

r

FIG. 3. Conditioned multiplier distributions for thea model,
satisfying strictly conditions~a! and ~b! in the text. Parameters ar
J59,a50.3,b50.65 and random translations were applied befo
calculating the multipliers.~a! Central distributions conditioned on
central parent multipliers:~1! p(MC

( j )u0<MC
( j 21)<1/2) and ~2!

p(MC
( j )u1/2,MC

( j 21)<1). ~b! Left distributions conditioned on left
parent multipliers: ~1! p(ML

( j )u0.2<ML
( j 21)<0.4) and ~2!

p(ML
( j )u0.6<ML

( j 21)<0.8) compared to theb-function parametri-
zation of unconditioned distributions in Figs. 1 and 2~full line!.
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of how to extract scaling exponents, but how to deduce
optimal non-energy-conserving and skewed splitting fu
tion from data. A starting point are the findings of Ref.@5#,
which show how to extract bivariate splitting function
however, the aspect of translation invariance has not b
taken into account. A satisfactory solution of this intrica
inverse problem will only be feasible once additional obse
-
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-
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-

ables are studied experimentally, such asn-point correlation
functions or their wavelet compressed form@15#.
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