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Multiplier phenomenology in random multiplicative cascade processes
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We demonstrate that the correlations observed in conditioned multiplier distributions of the energy dissipa-
tion in fully developed turbulence can be understood as an unavoidable artifact of the observation procedure.
Taking the latter into account, all reported properties of both unconditioned and conditioned multiplier distri-
butions can be reproduced by cascade models with uncorrelated random weights if their bivariate splitting
function is nonenergy conserving. For themodel we show that the simulated multiplier distributions con-
verge to a limiting form, which is very close to the experimentally observed one. If random translations of the
observation window are accounted for, also the subtle effects found in conditioned multiplier distributions are
precisely reproducedS1063-651X99)05402-1

PACS numbeps): 47.27.Eq, 02.50.Sk, 05.40a

Random multiplicative cascade processes frequently serve Multiplicative cascade models are based on two assump-
as phenomenological models for the study of a variety ofions: (a) the existence of a scale-independent splitting func-
complex systems exhibiting multifractal behavior. In particu-tion p(W, ,Wg) and (b) statistical independence of the ran-
lar the energy dissipation field of fully developed turbulentdom weightsW,_ at one breakup from those of any other
flows has been most successfully modeled in such termgreakup. Oncep(W, ,Wg) is chosen or deduced from ex-
physically motivated by Richardson’s picture of energyperiment, the assumptiorta) and (b) allow to determine all
transfer from large to small scales by random breakups ofnoments and scaling exponents of the energy dissipation
eddies[1]. e, =E,/r by inverse Laplace transforni4,5]. Many experi-

Binary multiplicative cascade models relate the energymental measurements of moments and scaling exponents
flux E, at some integral scale to E,=E W;---W, con-  confirm that this simple construction reproduces the mea-
tained in a subinterval of size=L/2' at scale] by a product  sured multifractal aspects of the energy dissipation field
of mutually independent random weigh®;. More pre- amazingly well(e.g.,[3,6)).
cisely, the energy flEY) | contained in the intervat with A series of experimental investigatiofig—9] aim at a
lengthr=L/2 splits into a left(L) and right(R) offspring  direct study of the random weigh® by analyzing the dis-
interval, each of lengtin/2, whereby the content propagates tributions of closely related observables, so-called multipli-
according toEY V=W, E{) and EJ;;Y=WRE(, respec- ersM (or breakup coefficientg=2M in the case of binary
tively. For each breakup the two random weighit =0 breakupg whose operational definition is given below.
are chosenindependentlyfrom any preceding breakup, ac- These studies reveal that assumptians true over a decade
cording to a joint probability densitg(W, ,Wg) with expec-  Of scales, with the restriction that the scale-invariant distri-
tations(W,_ g)=1/2. The latter we denote as splitting func- bution p(M) depends also on the relative position of the
tion. Note that for a full description of a binary breakup the offspring to the parent interval; however, assumptibhis
specification of thgoint density is necessary. For the special clearly violated. Significant correlations between multipliers
case where the splitting function is concentrated along th@t adjacent scales are observed. Such correlations apparently
diagonal W +Wg=1, i.e. p(W_,Wg)=p(W,)S(W_+Wg Obscure the validity of uncorrelated multiplicative cascade
—1), each breakup strictly conserves energy; for all othemodels for fully developed turbulence, and more elaborate

forms, however, the reIatiorE(z‘k+1)+ E(ZJk_:ll):E(kJ) holds mModels, such as the_ correla_tem_model [8], were sug-
only on average. gested. These experimental findings gave already rise to a

A simple example is the splitting function critical discussion of the limitations of multiplier phenom-
enology[10]. In this paper we present a further clarification
of the experimental results.

P(WL,We) =[p16(WL = (1= a)/2)+ po6(W —(1+ B)/2)] In order to explain the observed multiplier correlations

X[p16(Wr—(1—a)/2) within the framework of binary multiplicative cascade pro-
cesses two considerations are madethe bivariate splitting
+p26(Wr—(1+B)/2)], (1) function p(W, ,Wg) should not be assumed to be energy

conserving; this is justified by the experimental restriction to
which is known as thex model [2]. The probabilitiesp;  measure the energy dissipation field of three-dimensional
=1-p,=p/(a+ B) are determined by energy conservationturbulence only along a one-dimensional ¢u., from the
in the mean:p,(1—a)+p,(1+B)=1. In contrast to the velocity time series obtained from anemometers and employ-
otherwise similap model suggested if8], thea model does ment of Taylor's frozen flow hypotheseLonsideratiorii)
not conserve energy in each local splitting. concerns the obvious nonhomogeneity of cascade processes.
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Due to their hierarchical structure thepoint correlation 2
functions of the generated energy dissipation field are not ;s
translationally invariantcf. [11] for a visualization; multi-
pliers in dyadic intervals will be different if the observation
window L is shifted by an arbitrary amount, sayx. In real
world experiments, however, the observation window is o
placed in no relation with the unobservable hierarchicaly , -
structure of the cascade, so that implicitly an averaging overs’
uniform random translations is performed. The effect of such< * |
random translations was hitherto assumed to be negligible 1
We test this assumption by introduction of random shifts ,;
before calculating the multipliers. It is especially this latter
operation that leads to a full explanation of all available ex-
perimental findings of conditional multiplier distributions. In
the following we discuss the implications of above consider-
ations(i) and(ii) one after the other.

It has already been pointed out [iti2] that the noncon-
servation of energy in the splitting function leads to devia-
tions from perfect multifractal scaling. Here we focus on its ; e 0 i 7
influence on multiplier distributions obtained from simulated M,0)
realizationf(kj) afterJ cascade steps. Depending on the rela- _
tive position of parent to offspring intervals, left, right, and  FIG. 1. Convergence of the left multiplier distributiopéM ()

centred multipliers at scajeand positiork are operationally ~ ©f the non-energy conserving-model (1) to a quasicontinuous
defined as limiting form. Parameters aré=9,4=0.3, andB=0.65. For com-

parison the experimentally deducegkfunction parametrization of
=U+1) =U+1) the left(right) unconditioned multiplier distribution witjg=3.2[8]
M i) =2k (2)  is shown as a solid line.
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' from (1) to p(M{1) via Egs.(2) and(3) acts effectively as a
EY 2 +EYLY nonlinear smoothing operation. This we demonstrate in the
= following simulation results: The scale dependent [éf3]
multiplier distributionp(M{!) is depicted in Fig. 1, where
10° configurations were generated, each with9 cascade
steps. While the weighté/_  in the forward evolution may
take only two values (+ «)/2 and (1+ B)/2, the multipliers
0(2) take more and more distinct values as the scale difference
J—] increases and becomes soon quasicontinuous. Already
after three backward steps the Ié&dind righy multiplier dis-

and the multiplier distributionp(M ) are obtained by his-
togramming all B<k<2! possible multipliers at a given
scale.

It is important to note that the experimentally measure
“backward” energies

(k+1)29-i-1 tributions apparently converge to a limiting form that comes
El= 2 EW 3) surprisingly close to a parametrization of the experimentally
k | =2~ b observed multiplier distributior{8], shown as continuous

line. The parameters used in this simulation were0.3,8

are obtained by successive summations from the finest rese=0.65, but this finding also holds for other parameters as, for
lution scaleld to larger ones and are generally not equal to theexample, a=8=0.4 or «=0.5,3=0.3; all these choices
‘forward’ energy densitieg () which arise as intermediate have approximately the same second-order splitting moment
states in the evolution of the cascade from larger to smalle{W y= fop(WL yWR) W2 dW, dWg.
scales. For a clearer distinction we denote the former with a A similar convergence follows for centred multiplier dis-
bar. Since, by definition, the multipliers satisf§, | + Mg  tributionsp(M¢) with the distinction that the corresponding
=1, they effectively enforce local energy conservation andimiting density appears to be narrowfghown in Fig. 2a)
therefore give only incomplete information on the truefor j=3] compared tqp(M),); this latter feature is quite in
parent-offspring relation of non-energy-conserving breakupsagreement with the observationg #1. Analogous results are

For the special case of energy-conserving splitting funcfound for multipliers generalized to arbitrary length ratios
tions, such as the model[3], the multipliers(2) do give a  between offspring and parent intervals. In Figa)2he left-
faithful representation of local breakups. Here, the left andskewed histograms show corresponding limiting distribu-
right multiplier distributions are equal to the splitting func- tions for left and central multipliers for two cascade st¢ps
tion p(W) along theW, +Wg=1 diagonal and do not de- —j+2 and thus relate intervals with length ratio 1/4.
pend on the scalp In the above comparisons the unavoidable random trans-

The situation is quite different for non-energy-conservinglations of the observation window with respect to the cascade
models, such as the model. In this case there is no simple position[as discussed in suggestiGn abovd has not been
analytical relation between the splitting functigh and the  accounted for. Following the procedure introduced in Ref.
resulting distributions of multiplier2); in fact, the mapping [11], we adopt a scheme of random translations in the fol-
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FIG. 2. (a) Left (dashegdland centredsolid) multiplier distribu- FIG. 3. Conditioned multiplier distributions for the model,

tions for thea model (1). For the one step multipliergj+1) satisfying strictly conditionga) and (b) in the text. Parameters are
the length ratio between offspring and parent intervals\ is3 J=9,04=0.38=0.65 and random translations were applied before
while for the two-step multipliersj(—j +2) we havex = %. Param- calculating the multipliers(a) Central distributions conditioned on
eters are)=9,a=0.3, andB3=0.65.(b) Same aga), but with ran-  central parent multipliers{1) p(M¥|o=M{"Y<1/2) and (2)
dom translations applied before calculating the multipliers. Forp(M{|1/2<M{~Y<1). (b) Left distributions conditioned on left
comparison the experimentally deduggdunction parametrization parent multipliers: (1) p(M(Lj)|O.2§M(Lj’1)s 0.4) and (2

of the left (right) multiplier distribution (—j+1) with 8=3.2[8]  p(M{"|0.6<M{"Y<0.8) compared to thg-function parametri-

is shown as a thick solid line. zation of unconditioned distributions in Figs. 1 andfall line).

lowing way: for the target resolution scaleof a given inte-  \joreover, the maximum value of the former is higher than

gral length scald a longer cascade realization with-3  the |atter. This result is identical to the experimental finding
steps is generate@orresponding to an integral length scale of Ref. [9].

8L) and an observation window of siteis shifted randomly For the conditioned left multiplier distributions
by t bins within 8L. In other words, only the 2bins of the P(MDOIM in=MU~"Y<M, ) we show results in Fig.(®);
generate(Ef,”), which lie within the randomly placed ob- again the parametersa(B)=(0.3,0.65) for thea model
servation window are considered, giving a simulated anthave been used. The conditioning on the subrange

translatedE) =E"¥ , wheret is a uniformly distributed [ M, M o] =[0.2,0.4 leads to narrowing of the distribu-

integer within[ 0, 7X 2°— 1]. Then the multipliers are deter- tion and conditioning on[Myi,,M,]=[0.6,0.8 to a
mined again by Eq(2) and sampled over a large number of broadening. Again, this is in perfect agreement with the ex-
configurations and random shifts perimental finding in Ref[8].

There is no dramatic change in unconditioned multiplier ~We report without figures that for the parameter choice
distributions after addition of random translations; the small(«,8)=(0.4,0.4) the effects seen in Fig.(bt3 become
effect is illustrated in Fig. @) compared to Fig. @. The weaker and vanish almost completely for the choiagd)
left multiplier distributionp(M_) now is even closer to the =(0.5,0.3). Also Fig. &) is modified: for (x,p3)
experimentally deduced scale-invariant parametrization of=(0.5,0.3) the maximum of the left skewed distributidn
Ref.[8]; this property also holds for the other two parametri-is lower than the right skewed on@), while for (a,B)

zations used, ¢,8)=(0.5,0.3) and (0.4,0.4). =(0.4,0.4) they are approximately equal. A noticeable left/
So far the multiplier distributions we have looked at areright shift, however, remains in all three cases.

unconditioned. In the experimental analydeés9] condi- From these observations we come to the following con-

tioned multiplier distributions of the form clusion: with non-energy-conserving splitting functions and

the inclusion of random translations the unconditioned mul-

tiplier distributions observed in the d4t®,9] are reproduced
P(M(Aj)||\/|min$M(Aj_l)$Mmax) (4) quite naturally; moreover, once the input splitting function is
skewed in a certain direction also the correct conditioned
multiplier distributions are deduced. Very similar numerical
observations are also obtained for different choices of split-
: o i . . ting functions[14]. Since the simulated cascades satisfy both
with the multiplierM{’ of its offspring, whereA stands for asgumptions(rE\) gmd (b) above, we regard the compe?r/able

L,C,R, respectively. o _ .. violation of (b) in experiments and Fig. 3 as an unavoidable
The addition of random translations introduces significantytifact of the observation procedure.

correlations among multipliers at different scales, which are  Rg|ated to the multiplier phenomenology is the problem

well reflected in the conditioned distributiorid). Figures ¢ oy to extract the corre¢multifractal) scaling exponents.
3(a) and 3D) illustrate the correlations between offspring and 11,0 findings of Ref[12] favor the left/right over the central

parent multiplier for the centred and left case respectivelym jiipliers, but there the random translations were not ac-
Compared to the unconditioned densitgM{’) the condi-  coynted for. Certainly the inclusion of the latter modifies the
tioned onep(MP|0<M{"M<1/2) is skewed to the left and scaling exponents to some extéfil], the more noticeable
p(Mg)|1/2<M(CJ*1)< 1) is skewed to the right; the centred the higher the order of the underlying moments. Due to these
offspring and parent multipliers are positively correlated.operational ambiguities we feel that it should not be a matter

have been shown; they correlate a parent multigiiéf™ >
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of how to extract scaling exponents, but how to deduce thables are studied experimentally, suchngsoint correlation
optimal non-energy-conserving and skewed splitting func{functions or their wavelet compressed fofirb].

tion from data. A starting point are the findings of R],

which show how to extract bivariate splitting functions; B.J. acknowledges support from the Alexander—von-
however, the aspect of translation invariance has not beedumboldt Stiftung. P.L. is grateful for the hospitality and
taken into account. A satisfactory solution of this intricatesupport of the Max-Planck-Institut fuPhysik komplexer
inverse problem will only be feasible once additional observ-Systeme.
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